Fluorescence spectroscopy of roGFP2-based redox probes responding to various physiologically relevant oxidant species in vitro

نویسندگان

  • Alexandra Müller
  • Jannis F. Schneider
  • Adriana Degrossoli
  • Nataliya Lupilova
  • Tobias P. Dick
  • Lars I. Leichert
چکیده

This article contains representative fluorescence excitation spectra of roGFP2-based probes used for ratiometric analysis of redox changes as presented in the article "Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species" [1]. The recombinant probes roGFP2, roGFP2-Orp1, and Grx1-roGFP2 were exposed to various oxidative and nitrosative species, including hydrogen peroxide (H2O2), aldrithiol-2 (AT-2), glutathione disulfide (GSSG), hypochlorous acid (HOCl), S-nitrosoglutathione (GSNO), peroxynitrite (ONOO-), potassium polysulfide (K2Sx), spermine NONOate (SperNO), and diethyl amino NONOate (DeaNO) at different molar ratios. Fluorescence excitation spectra of the probes were recorded in the excitation wavelength range between 350 and 500 nm and for a total of 60 min. Analysis and interpretation of the data is presented in an associated article [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria

Phagocytic immune cells kill pathogens in the phagolysosomal compartment with a cocktail of antimicrobial agents. Chief among them are reactive species produced in the so-called oxidative burst. Here, we show that bacteria exposed to a neutrophil-like cell line experience a rapid and massive oxidation of cytosolic thiols. Using roGFP2-based fusion probes, we could show that this massive breakdo...

متن کامل

Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators.

Changes in the redox equilibrium of cells influence a host of cell functions. Alterations in the redox equilibrium are precipitated by changing either the glutathione/glutathione-disulfide ratio (GSH/GSSG) and/or the reduced/oxidized thioredoxin ratio. Redox-sensitive green fluorescent proteins (GFP) allow real time visualization of the oxidation state of the indicator. Ratios of fluorescence f...

متن کامل

Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings

Glutathione is important for detoxification, as a cofactor in biochemical reactions and as a thiol-redox buffer. The cytosolic glutathione buffer is normally highly reduced with glutathione redox potentials (E GSH ) of more negative than -310 mV. Maintenance of such negative redox potential is achieved through continuous reduction of glutathione disulfide by glutathione reductase (GR). Deviatio...

متن کامل

Monitoring Intracellular Redox Changes in Ozone-Exposed Airway Epithelial Cells

BACKGROUND The toxicity of many xenobiotic compounds is believed to involve oxidative injury to cells. Direct assessment of mechanistic events involved in xenobiotic-induced oxidative stress is not easily achievable. Development of genetically encoded probes designed for monitoring intracellular redox changes represents a methodological advance with potential applications in toxicological studi...

متن کامل

H2O2 dynamics in the malaria parasite Plasmodium falciparum

Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017